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It is shown that within the framework of the Kershaw stochastic model 
generalized by the author to the relativistic case a Feynman-type process may 
be constructed which can formally be understood as a diffusion phenomenon in 
Euclidean space. This makes it possible to introduce a real probability measure 
in the scheme of quantum mechanics proposed by Feynman. 

1. I N T R O D U C T I O N  

In the scheme of quantum mechanics proposed by Feynman (1948) an 
analogy of the probabil i ty measure is used which allows one to describe 
the behavior of quantum mechanical  particles. Kac  (1957) noticed that this 
measure is a complex quantity. This complex measure in the Feynman  
path integral corresponds to the presence of a factor i in the exponential 
for the Wiener measure (see Nash, 1978). 

The presence of the i in the exponential causes uncontrollable oscilla- 
tions in the path integral, This makes difficult the understanding of the 
Feynman  path integral as a well-defined mathematical  object. Despite this 
drawback it is a matter  of history that the path integral is an extremely 
important  contribution to quantum theory. 

In the present paper  we make an at tempt to generalize the definition 
'of the Feynman path integral to the relativistic case within the f ramework 
of the theory of stochastic processeg started by Kershaw (1964) and Nelson 
(1966) (see the review by Moore, 1979). Conditionally, it is considered that 
there exist two approaches to the generalization of the Feynman  scheme to 
the relativistic case. One of them was started by Feynman  (1950, 1951) and 
is based on a formal generalization of the notion of path in the four- 
dimensional space and time. In  this case the path is defined by four 
functions x ~(s), where s is some invariant parameter  (proper time). In the 
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paper of Miura (1979) relativistic path integrals are investigated by using 
Weyl's (1929, 1950) gauge theory. 

Supporters of the second approach assume that a strict definition of 
relativistic integrals is possible, if the Feynman process can be considered 
from the point of view of the relativistic-invariant description of Markov 
diffusion processes (see, for example Guerra and Ruggiero, 1978). The 
difficulty of this approach is as follows: Until now a satisfactory scheme of 
the relativistic-invariant description of diffusion processes is absent. Many 
authors, in particular, Guerra and Ruggiero (1978), Lehr and Park (1977), 
Vigier (1979), and Namsrai (1980) have performed studies in this direction. 

In the previous paper (Namsrai, 1980) we have considered a method 
for an extension of the stochastic model of diffusion processes to the 
relativistic case. The basic hypothesis was as follows: 

(i) The physical quantities are considered as functions of complex 
times t + iT in the limit ~---~0. 

(ii) It is assumed that the stochastic behavior of a particle takes place 
in the Euclidean space (xi, z), but not in the Minkowski space (~;, t). 

Using the language of random fluctuations this means that the 
fluctuations appear in the Euclidean space E4(~ i, z). The importance of the 
method of shift Xo---~Xo+ ir in the time variable in quantum field theory 
and quantum mechanics was noted by Alebastrov and Efimov (1974) and 
Davidson (1978), respectively. 

We have constructed in this paper within the framework of this 
approach the Feynman process by using Smoluchowski-type equations. 
These equations allow one to obtain easily the Schr6dinger, Klein- 
Gordon, and Dirac equations. The interaction in the Smoluchowski-type 
equations for fields ~0 is introduced by using Weyl's (1929, 1950) gauge 
theory (see also Miura, 1979). 

In our model the Feynman process may formally be interpreted as a 
stochastic process in complex times with a real probability measure which 
occurs in the Euclidean space. 

2. DIFFUSION PROCESS IN REAL TIME 

In the language of motion of a stochastic particle the property of 
Markov process means that the character of displacement of a particle at 
given time does not depend on the property of previous displacements. 
Accordingly, the position probability density O(xi, t) must obey the 
Smoluchowski equation 

p(xi, t+at)= f o(x,-Sx,,t)eo(xi-Sx,,t; 8xi, At)d3(Sx) (2.1) 
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where P0 is the conditional probability density that a particle at position 
x i -8x~ at time t will be displaced by 8x~ during the interval At, thus 
reaching position x; at time t + At. The simple form 

(8x')2 ] (2.2) 
Po = (4~r@ At)-a/Eexp 4@ At 

reduces to the diffusion equation for p(xi, t): 

O__p_p _- @ V2 p (2.3) 
Ot 

here | is the diffusion coefficient. 
Following our model (Namsrai, 1980) in the relativistic case we 

consider formally the motion of a particle suffering the random flights 
owing to stochasticity of the four-dimensional Euclidean space E4(~iO" ). 
Then equation (2.1) acquires the following form: 

p(xtv U + AU) = f p(x i --Yi, Xo -I- iY4, u ) e  I (x  i -Y i ,  Xo "4- iY4, u; YE, Au)d4yE, 

(2.4) 

where the variables x~ = (Xo, Xi) are pseudo-Euclidean and P! can be chosen 
in the form 

yE  2 
P1=(4~r@ Au)-2exp( 4| Au } (2.5) 

here u is some invariant parameter (proper time) which may be inter- 
preted as the fifth parameter introduced by Miura (1979). From (2.4) and 
(2.5) we have 

0p = @ F-qp Ou 

0 2 2 2 
[] = - -  + - -  (2.6) 

0Xo 2 0xl 2 

Notice that a more complicated form of the functions (measures) P0 
and Pl make Fokker-Planck equations for p both in the nonrelativistic 
and relativistic cases, respectively, (see Namsrai, 1980). 
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3. "DIFFUSION P R O C E S S "  IN COMPLEX TIMES 

Now a basic postulate is that a field cp(xi, t) (probability amplitude) 
associated with a particle suffers a transformation and is defined as a 
diffusion process in complex time, whenever the particle displaces from 
point x i - S x  ~ at time t to position x~ at t+At. Then the corresponding 
Smoluchowski-type equation for the field ~(xi, t) becomes 

q)(xi, t -  iAt) = f cp(x i -- 6xi, t)eo(SXi; At)da(ax) (3.1) 

where P0 is given by (2.2). It is easily seen that from equation (3.1) we 
obtain the Schr6dinger equation assuming @ = h/(2m). 

Substituting At---~- iAt into equation (3.1) gives the Feynman integral, 
and therefore in the nonrelativistic case our postulate does not make a new 
result in the method of the Feynman path integrals. An essential difference 
appears in the construction of the relativistic Feynman-type integrals by 
using the diffusion processes. We now pass to this question. 

Roughly speaking, in the relativistic case the Feynman-type integrals 
for the probability amplitude are formally replaced by Smoluchowski-type 
equations at complex times. So, if the Feynman process rp(x~, u) is known 
at one value of u, its value at a slightly larger value u -  iAu is given by 

q)(x~,u- iAu) = f q)(xl-yi, xo+ iY4,u)Pl(Ye, Au)dayE (3.2) 

From expression (2.5) and equation (3.2) we obtain the Kle in-Gordon 
equation in the parametric form 

l-~u = - | I--1~ (3.3) 

Sometimes, instead of equation (3.3) the following equation is considered: 

�9 0q) - Q (E]-- m2)rP l -~u=  (3.4) 

which is obtained by using the measure 

dl-t(Ye'Au)=d4yr(4~r6~ Au)-2exp( - m 2 ~ A u  4~AuY2 ) 

Formal formulas (3.1) and (3.2) will be interpreted as well-defined 
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mathematical objects--some integral equations with a real probability 
measure of the Gaussian type. Here quantity ~ is real always. 

4. INTRODUCTION OF INTERACTIONS INTO THE 
SCHEME 

As is clear, in the nonrelativistic case our formalism is equivalent to 
the Feynman integral if At--->--iAt. Then due to Feynman we can write 
equation (3.1) in a potential field U(xi) by the following formula: 

~(x~,t--iAt)=exp[ At 2 m ~  U(xi) ]" f ep(xi-dxi't)P~ 

From this we obtain the Schr6dinger equation 

h 0 ~ =  1 V ~+U(x i )  ~ 
i Ot 2m 

if | = h/(2m). 
In the relativistic case we introduce the interactions into our scheme 

within the framework of Weyl's gauge theory (see, Miura, 1979). Following 
this theory, the field takes the value rp(x~ + dx~,AP) after the transport 
connected with the displacement of a particle from a world point 
(coordinates x~) to a position ~ '  (coordinates xv + dx~), and therefore the 
variation &p of rp made by this transport is given by 

6op = cp( x.  + dx., A @ ) -- rp( x~) = d X .~p( x.) (4.1) 

If dx is the total differential of a coordinate function ieh(x~)/(fic), i.e., 

�9 e a X d x  
d x =  t-~c ~x~ 

then (4.1) affects only an arbitrary phase of % Generally, dx is given in the 
form 

�9 e 

dx = - i-~c A~ dx ~ (4.2) 

where A~ is an electromagnetic potential. Assume dx~, = x~ - x'~ and rewrite 
(4.1) in the following form: 

, /e , 
r ~ (4.3) 
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By using this formula the Feynman path integral for a Klein-Gordon 
particle may be defined in the form (Miura, 1979) 

4 
~(x~,u+~)= f exp( ~ So)(~(x#,A~)d4x' ~l (+_2~ri~e)-l/2 

where S O is the action of a free particle. 
Because the displacement of variables x i and x o in our case is of the 

Euclidean character, the corresponding formula (4.3) must be changed in 
the following manner: 

ie 
qg(x~, A 6)) = exp( ~ A.Ey~)~P(xi--yi, xo + iy4) (4.4) 

where At e= (-iAo, Ai) and A~,ey~, = A4Y4+ Ay i. Then we obtain the value 
of ~0 at a space-time point after the transformation using averaging over cp 
shifted by all possible Euclidean displacements with a real probability 
measure PI(YE, Au)d~vE of the Gaussian type and multiplied further by a 
weight function exp[(ie/2m~c)ASy~, ] for an infinitesimal value of y~; 

ie E _ + cp(x~,,u--iAu)= fexp(~A,, yt~)~(Xi Yi,Xo iY4,u)d~(ye, Au ) 

(4.5) 

where 

dtx(yE, Au) -- el(YE, Att)d~E 
From this we obtain the parametric Klein-Gordon equation in a external 
field 

. Oep ( O ie ) 2 
t~u=|  Ox. 2~--o~cA~, cp 

if | =h/(2m). 
The generalization of our formalism to a Dirac particle does not 

represent any difficulty; for example, expressions (4.4) and (4.5) acquire 
the following form: 

~(x~,AP)---exp[ ie2 2m| (A^E'ty~ +Y~T~A'e)]tP(xi--Yi, xo+iY4) 

(4.6) 
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and 

ie 1 (A " ty~+y/y ,A  ) 
@(x~ , ,u - iAu)=  exp 2 2m@c 

X ~P(x i - Y i ,  Xo .-I- iY4, u) dp (Ye, Au) 

where 

,E _ AI E(Xi --Yi, Xo + iy4) 

7'~ are Dirac matrices. 

and A E =  AS),~, 

(4.7) 

After some calculations we have the Dirac equation in the parametric 
form 

here 

�9 3~p [ ~ ie ]2 e i 
t~u  = ~ Ox~, 2--m---~c A~,] ~ 4c 2m a~F~,4,, 

1 aA~ ~A~ 

= = a x .  

5. CONCLUSION 

Equations (3.2), (4.5), and (4.7) we have obtained, generally speaking, 
have nothing to do with the Smoluchowski-type equations which describe 
the probability consequence, and therefore value P~(Ye, Au) is not interpre- 
ted as the probability transition. On the contrary, these equations may be 
interpreted as a formal exposition of some mathematical objects obtained 
by integrating with the real probability measure dl~(y e, Au) of the Gaussian 
type. Feynman path integrals themselves are not obtained in our scheme 
owing to the fact that variables x i and x 0 are shifted in a different way: 
xi--->x i + yi and Xo--->Xo+ iy 4. 

However, our method is interesting as representing one possibility for 
the relativistic generalization of Feynrnan-type integrals. 
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